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Abstract 
Recent advances in computer hardware and signal processing have made possible the use of EEG signals or 
“brain waves” for communication between humans and computers. Locked-in patients have now a way to 
communicate with the outside world, but even with the last modern techniques, such systems still suffer 
communication rates on the order of 2-3 tasks/minute. In addition, existing systems are not likely to be designed 
with flexibility in mind, leading to slow systems that are difficult to improve. This article explores the 
effectiveness of Time Frequency Analysis as a technique of classifying different mental tasks through the use of 
the electroencephalogram (EEG). EEG signals from several subjects through 6 channels (electrodes) have been 
studied during the performance of five mental tasks (a baseline resting task, mental multiplication, geometric 
figure rotation, mental letter composition, and counting). Improved off-line classification of two of them 
(“geometric figure rotation” and “mental letter composition”), for which poor results had been obtained with 
autoregressive models before, were the principal objective of this project. Different methods based on Time 
Frequency Representations have been considered for the classification between the two tasks mentioned above. 
A non-iterative method based on the Ambiguity Function was finally selected. The results indicate that this 
method is able to extract in half-second, distinguishing features from the data that could be classified as 
belonging to one of the two tasks with an average percentage accuracy which tends to zero. The same results 
were found when the method was exported for five tasks EEG signal classification.  
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1. Introduction 

A brain-computer interface (BCI) is a 
communication system that relies on the brain rather 
than the body for control and feedback. Ideally, it 
should run in a servo mode, allowing the subjects to 
initiate the communication anytime and anywhere 
without resorting to external stimuli or triggers. Such 
an interface not only offers a promising prosthetic 
device for those severely paralyzed but also signifies 
a radically new technology for the general public. 
Current BCI research is still in its early stage and the 
emphasis is placed on the design of algorithms to 
decode a pre-specified set of brain states. This 
involves three main aspects: 

Brain states. Only brain states consciously 
controllable by the subjects are suitable for BCI. 
Besides, these states should generate distinct, 
repeatable and measurable patterns whenever 
accessed. Among the most commonly used brain 
states are imaginations of body movements (motor 
imaginations). Motor imaginations can reliably 
change the neural activities over sensorimotor 
cortices. Depending on the part of the body imagined 
moving, these changes exhibit distinct spatial 
distributions [2]. Recognition of these patterns can 
then be translated into control signals, as is the case 
in this study.  

Recording devices. Motor imaginations can be 
recorded by both electroencephalography (EEG) and 
magneto encephalography (MEG). EEG remains the 
most popular way to record BCI signals, and will be 
the focus of this study. It measures scalp electrical 
activities diffused from the cortex. Compared to 
MEG, it is portable and inexpensive. However, EEG 
can only measure blurred cortical activities due to 
the diffusion of the skull and the skin. Thus EEG is 
normally used for studying cortical patches in the 
centimeter scale. Furthermore, EEG signals are 
contaminated by noise from various sources, such as 
muscle activities and power line interference. Spatial 
and temporal filters are commonly applied before 
any further analysis [1]. 

 Decoding algorithms. Pre-filtered EEG signals still 
contain considerable noise, which poses a challenge 
for its decoding. Statistical machine learning (ML) 
techniques have been introduced into BCI to combat 
these variations. Techniques like Artificial Neural 
Networks, Support Vector Machine (SVM) and 
Linear Discriminant Analysis [2],  have been 
employed to learn patterns from training EEG 
signals and then classify new EEG signals. This 
strategy often results in increased decoding success 
and significant shortening of subject training time.  

Artificial neural networks (ANNs) are 
computational framework inspired by our expanding 
knowledge of the activity of networks of biological 
neurons in the brain. ANNs cannot hope to 
reproduce all the still not well-understood 
complexities of actual brain networks. Rather, most 
ANNs are implemented as sets of nonlinear 
summing elements interconnected by weighted links, 
forming a highly simplified model of brain 
connectivity. The basic operation of such artificial 
neurons is to pass a weighted sum of their inputs 
through a nonlinear hard-limiting or soft “squashing” 
function. To form an ANN, these basic calculating 
elements (artificial neurons) are most often arranged 
in interconnected layers. 

 Some neurons, usually those in the layer 
furthest from the input, are designated as output 
neurons. The initial weight values of the 
interconnections are usually assigned randomly. The 
operation of most ANNs proceeds in two stages. 
Rules used in the first stage, training (or learning), 
can be categorized as supervised, unsupervised, or 
reinforced. During training, the weight values for 
each interconnection in the network are adjusted 
either to minimize the error between desired and 
computed outputs (supervised learning) else to 
maximize differences (or to minimize similarities) 
between the output categories (unsupervised or 
competitive learning). In reinforced learning, an 
input-output mapping is learned during continued 
interaction with the environment so as to maximize a 
scalar index of performance [3]. 

 The second stage is recall, in which the ANN 
generates output for the problem the ANN is 
designed to solve, based on new input data without 
(or sometimes with) further training signals. Because 
of their multifactorial character, ANNs have proven 
suitable for practical use in many medical 
applications. Since most medical signals of interest 
are usually not produced by variations in a single 
variable or factor, many medical problems, 
particularly those involving decision-making, must 
involve a multifactorial decision process. In these 
cases, changing one variable at a time to find the best 
solution may never reach the desired objective [4], 
whereas multifactorial ANN approaches may be 
more successful. In this chapter, we review recent 
applications of ANNs to brain signal processing, 
organized according to the nature of brain signals to 
be analyzed and the role that ANNs play in the 
applications [5]. 
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2. Roles of Ann in Brain Signal Process 

Todays, ANNs have been applied to brain data for 
the following purposes: 

 Feature Extraction, Classification, and 
Pattern Recognition: ANNs here serve 
mainly as non-linear classifiers. The inputs are 
preprocessed so as to form a feature space. 
ANNs are used to categorize the collected data 
into distinct classes. In other cases, inputs are 
not subjected to preprocessing but are given 
directly to an ANN to extract features of 
interest from the data. 

 Adaptive Filtering and Control: ANNs here 
operate within closed loop systems to process 
changing inputs, adapting their weights “on 
the fly” to filter out unwanted parts of the 
input (adaptive filtering), or mapping their 
outputs to parameters used in online control 
(adaptive control). 

 Linear or Nonlinear Mapping: Here ANNs 
are used to transform inputs to outputs of a 
desired form. For example, an ANN might 
remap its rectangular input data coordinates to 
circular or more general coordinate systems. 

 Modeling: ANNs can be thought of as 
function generators that generate an output 
data series based on a learned function or data 
model. ANNs with two layers of trainable 
weights have been proven capable of 
approximating any nonlinear function. 

 Signal Separation and DE Convolution: 
These ANNs separate their input signals into 
the weighted sum or convolution of a number 
of underlying sources using assumptions about 
the nature of the sources or of their 
interrelationships (e.g., their independence). 

 Texture Analysis and Image Segmentation: 
Image texture analysis is becoming 
increasingly important in image segmentation, 
recognition and understanding. ANNs are 
being used to learn spatial or spatial-frequency 
texture features and, accordingly, to categorize 
images or to separate an image into sub 
images (image segmentation). 

 Edge Detection: In an image, an edge or 
boundary between two objects can be mapped 
to a dark band between two lighter areas 
(objects). By using the properties of intensity 
discontinuity, ANNs can be trained to 
“recognize” these dark bands as edges, or can 
learn to "draw" such edges based on contrast 
and other information [6]. 
 
 

 
3. Electro-Encephalogram and Magneto 
    Encephalogram  

The electroencephalogram (EEG) is a non-invasive 
measure of brain electrical activity recorded as 
changes in the potential difference between two 
points on the scalp. The magneto encephalogram 
(MEG) is its magnetic counterpart. In accordance 
with the assumption that the ongoing EEG can be 
alternated correspondingly by stimulus or event to 
form the event-related potential (ERP) or the evoked 
potential (EP), these changes, though tiny, can be 
recorded through the scalp [3]. 

 It is possible for researchers to apply pattern 
recognition algorithms to search for the differences 
in brain status while the brain is performing different 
tasks. Thus, applied an autoregressive (AR) model to 
four-channel EEG potentials to obtain features that 
were used to train an ANN using a back propagation 
algorithm to differentiate the subject's intention to 
move the left or right index finger or right foot. They 
suggested the framework might be useful for 
designing a direct brain-computer interface. In the 
study of [7] ANNs were trained to determine the 
stage of anesthesia based on features extracted from 
the middle-latency auditory evoked potential 
(MLAEP) plus other physiological parameters. 

 By combining power spectral estimation, 
principal component analysis and ANNs, Jung et al. 
(1997) demonstrated that continuous, accurate, 
noninvasive, and near real-time estimation of an 
operator's global level of alertness is feasible using 
EEG measures recorded from as few as two scalp 
site[8]. 

  Results of their ANN-based estimation 
compare favorably to those using a linear regression 
model applied to the same PCA-reduced EEG power 
Spectral data. As a linear mapping device, Sun and 
Sclabassi (2000) employed an ANN to transform the 
EEG topography obtained from a forward solution in 
a simple spherical model to a more realistic 
spheroidal model whose forward solution was 
difficult to compute directly.  

Here, a back propagation learning algorithm was 
used to train an ANN to convert spatial locations 
between spherical and spheroid models. Instead of 
computing the infinite sums of the Legendre 
functions required in the asymmetric spheroidal 
model, the calculations were carried out in the 
spherical model and then converted by the ANN to 
the more realistic model for display and evaluation. 
Recently, ANNs have made an important impact on 
the analysis of EEG and MEG by separating the 
problem of EEG or MEG source identification from 
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that of source localization, a mathematically 
underdetermined problem any scalp potential 
distribution can be produced by a limitless number of 
potential distributions within the head.  

Because of volume conduction through 
cerebrospinal fluid, skull and scalp, EEG and MEG 
data collected from any synchronous but relatively 
independent neural processes within a large brain 
volume. This has made it difficult to relate EEG 

measurements to underlying brain processes and to 
localize the sources of EEG and MEG signals. 
Progress has been made by several groups in 
separating and identifying the distinct brain sources 
from their mixtures in scalp EEG or MEG recordings 
assuming only their temporal independence and 
spatial stationary, using a class of independent 
component analysis (ICA) or blind source separation 
(BSS) algorithms [7]. 

 
Figure 1. A Segment of a Multichannel EEG of an Adult Subject during a Multiplication Task [8]. 

 

4. Mathematical Model OF THE Cortex  

Typically, a neuronal cluster will generate electrical 
oscillations. It has been modeled as an oscillator with 
phase ߠ and output s. Its dynamics are governed by a 
simple phase model: 

൜ ܵ = (ߠ)݂
ߠ = ߱ +  (ݐ)݃

where ߱	is the intrinsic frequency of the oscillation 
and ݂ is a function 2ߨ-periodic inߠ and g (t) is the 
input to the oscillator. Further g (t) will accelerate 
the oscillation if it assumes positive values, and slow 
it down if negative. The whole cortex can then be 
modeled as a networked dynamical systemܦ, as 
shown in Figure 1.  

Each node in the system represents a neuronal cluster 
and each link a neural interaction. The input, g (t), to 
each neuronal cluster now consists of two parts: 
influence from other clusters and modulation by 

subcortical structures. Suppose the links of the 
network are represented as an adjacency matrix G 
ܩ) 	= 	1 if node i and j are connected; ܩ = 	0 
otherwise). Then the dynamics of a node I take a 
more specific form [9]: 

ߠ = ߱ + ߳ܩ൫ݏ − ൯ݏ + ℎ(ݐ)


 

Where ∑ ߳ܩ(ݏ − )ݏ  represents the influence 
from other nodes, and ℎ(ݐ) is the subcortical input. 
Note that there is an added parameter ߳  in (2), 
which controls the strength of the influence from 
node j to i [10]. 

 
Figure 1. Networked Dynamical System Model of the 

Cortex [10]. 
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5. Brain Computer Interface Technology  

A Brain-Computer Interface (BCI) is a system that 
acquires and analyzes neural signals with the goal of 
creating a communication channel directly between 
the brain and the computer. Such a channel 
potentially has multiple uses. For example: 

 Bioengineering applications: assist devices 
for disabled people. 

 Human subject monitoring: sleep disorders, 
neurological diseases, attention monitoring, 
and/or overall "mental state". 

 Neuroscience research: real-time methods for 
correlating observable behavior with recorded 
neural signals. 

 Man–Machine Interaction: Interface devices 
between human and computers, machines. 

For many years, people have speculated that 
electroencephalographic (EEG) activity or other 
measures of brain function might provide this new 
channel. Over the past decade, productive BCI 
research programs have begun. Facilitated and 
encouraged by the new understanding of brain 
functions and by the low-cost computer equipment, 
these programs have concentrated mainly in 
developing new communication and control 
technologies for people with severe neuromuscular 
disorders. The immediate goal is to provide 
communication capabilities so that any subject can 
control the external world without using the brain's 
normal output pathways of peripheral nerves and 
muscles. Nowadays, such activities drive their efforts 
in: 

 Brain (Neural) Signal Acquisition: development 
of both invasive and non-invasive techniques 
for high quality signal acquisition. 

 Algorithms and Processing: advanced 
machine learning and signal processing 
algorithms, which take advantage of cheap/fast 
computing power (i.e. Moore's Law2) to 
enable online real-time processing. 

 Underlying Neuroscience: a better 
understanding of the neural code, the 
functional neurons anatomy, the physiology 
and how these are related to perception and 
cognition, enabling signals to be interpreted in 
the context of the neurobiology [11].  

Present BCI’s use EEG activity recorded at the 
scalp to control cursor movement, select letters or 

icons, or operate a neuro-prosthesis. The central 
element in each BCI is a translation algorithm that 
converts electrophysiological input from the user 
into output that controls external devices. BCI 
operation depends on effective interaction between 
two adaptive controllers: the user who encodes his or 
her commands in the electrophysiological input 
provided to the BCI, and the computer which 
recognizes the command contained in the input and 
expresses them in the device control. Current BCI’s 
have maximum information transfer rates of 5-25 
bits/min. Achievement of greater speed and accuracy 
depends on improvements in: 

 Signal Acquisition: methods for increasing 
signal-to-noise ratio (SNR), signal-to 
interference ratio (S/I)) as well as optimally 
combining spatial and temporal information. 

 Single Trial Analysis: overcoming noise and 
interference in order to avoid averaging and 
maximize bit rate. 

 Co-Learning: jointly optimizing combined 
man-machine system and taking advantage of 
feedback. 

 Experimental Paradigms for Interpretable 
Readable Signals: mapping the task to the 
brain state of the user (or vice versa). 

 Understanding Algorithms and Models 
within the Context of the Neurobiology: 
building predictive models having neuro-
physiologically meaningful parameters and 
incorporating physically and biologically 
meaningful priors. 

The common structure of a Brain Computer 
Interface is the following Figure3 [12]: 

 Signal Acquisition: the EEG signals are 
obtained from the brain through invasive or 
non-invasive methods (for example, 
electrodes). After, the signal is amplified and 
sampled. 

 Signal Pre-Processing: once the signals are 
acquired, it is necessary to clean them. 

 Signal Classification: once the signals are 
cleaned, they will be processed and classified 
to find out which kind of mental task the 
subject is performing. 

 Computer Interaction: once the signals are 
classified, they will be used by an appropriate 
algorithm for the development of a certain 
application. 
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Figure 2. BCI common structure [13] 

 

6. Eeg Signal Classification  

Oscillatory states are the most remarkable features of 
EEG activity, because they reflect not only the 
synchronization of massive numbers of neurons but 
also a temporally ordered rhythmicity of activation 
[14]. Different oscillatory patterns may be indicative 
of different information processing states, and it has 
been proposed that the oscillatory patterns play an 
active role in these states [14], [15.16].  

According to this view, the rhythmic 
synchronization during oscillatory states can serve to 
enhance perception, learning, and the transmission of 
neuronal signals between different regions of the 
brain. Traditional spectral analysis tools are not the 
best options to quantify the different oscillatory 
activities in the EEG, since the neural processes that 
generate the EEG are intrinsically dynamic. Indeed, 
there are transient changes in the power or peak 
frequency of EEG waves which can provide 
information of primary interest. The non-stationary 
nature of the EEG signals makes it necessary to use 
methods which are able to quantify their spectral 
content as a function of time. Time-frequency 
representation (TFR) methods are well suited as 
tools for the study of spontaneous and induced 
changes in oscillatory states, and we will be used 
here with this purpose in mind [17]. 

6.1. Signal Processing  

A BCI measures brain signals and processes them in 
real time to detect certain patterns that reflect the 
user’s intent. This signal processing can have three 
stages: preprocessing, feature extraction, and 
detection and classification. Preprocessing aims at 
simplifying subsequent processing operations 
without losing relevant information. An important 
goal of preprocessing is to improve signal quality by 
improving the so-called signal-to-noise ratio (SNR). 

A bad or small SNR means that the brain 
patterns are buried in the rest of the signal (e.g. 
background EEG), which makes relevant patterns 
hard to detect. A good or large SNR, on the other 
hand, simplifies the BCI’s detection and 
classification task. Transformations combined with 

filtering techniques are often employed during 
preprocessing in a BCI [18]. 

  Scientists use these techniques to transform the 
signals so unwanted signal components can be 
eliminated or at least reduced. These techniques can 
improve the SNR. The brain patterns used in BCIs 
are characterized by certain features or properties. 
For instance, amplitudes and frequencies are 
essential features of sensorimotor rhythms and 
SSVEPs.  

The firing rate of individual neurons is an 
important feature of invasive BCIs using intra-
cortical recordings. The feature extraction algorithms 
of a BCI calculate (extract) these features. Feature 
extraction can be seen as another step in preparing 
the signals to facilitate the subsequent and last signal 
processing stage, detection and classification. 
Detection and classification of brain patterns is the 
core signal processing task in BCIs. The user elicits 
certain brain patterns by performing mental tasks 
according to mental strategies, and the BCI detects 
and classifies these patterns and translates them into 
appropriate commands for BCI applications.  

This detection and classification process can be 
simplified when the user communicates with the BCI 
only in well-defined time frames. Such a time frame 
is indicated by the BCI by visual or acoustic cues. 
For example, a beep informs the user that s/he could 
send a command during the upcoming time frame, 
which might last 2–6 s. During this time, the user is 
supposed to perform a specific mental task. The BCI 
tries to classify the brain signals recorded in this time 
frame. This type of BCI does not consider the 
possibility that the user does not wish to 
communicate anything during one of these time 
frames, or that s/he wants to communicate outside of 
a specified time frame. This mode of operation is 
called synchronous or cue-paced. Correspondingly, a 
BCI employing this mode of operation is called a 
synchronous BCI or a cue-paced BCI. Although 
these BCIs are relatively easy to develop and use, 
they are impractical in many real-world settings. A 
cue-passed BCI is somewhat like a keyboard that can 
only be used at certain times. In an asynchronous or 
self-paced BCI, users can interact with a BCI at their 
leisure, without worrying about well-defined time 
frames [18].  

Users may send a signal, or choose not to use a 
BCI, whenever they want. Therefore, asynchronous 
BCIs or self-paced BCIs have to analyses the brain 
signals continuously. This mode of operation is 
technically more demanding, but it offers a more 
natural and convenient form of interaction with a 
BCI. More details about signal processing and the 
most frequently used algorithms in BCIs can be 
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found in chapters “Digital Signal Processing and 
Machine Learning” and “Adaptive Methods in BCI 
Research – An Introductory Tutorial” of this volume. 
Since the first wave of popularization of back 
propagation networks, nearly two decades ago, an 
ever-growing number and variety of ANN models 
have been devised to tackle an ever-widening variety 
of problems. The overall insight that ANNs both 
embody and exemplify is perhaps that our human 
intelligence is multifactorial and highly adaptable to 
using whatever forms of information are available to 
us. In this spirit, we suggest that researchers always 
attempt to interpret the physiological meaning both 
of the features of their input data and of the data 
models that their trained ANNs represent. Too often 
ANNs have been treated like “black boxes.”  

We believe it is time to open the black boxes and 
interpret what is happening inside them. Such 
interpretations might even give new insights into the 
nature of the biomedical signals, or suggest new or 
more efficient ways to look at the input data. It is 
also possible that the ANN models and methods 
might suggest more efficient methods to collect input 
data. Such 'model mining' might even prove to be the 
most rewarding result of applying ANNs. 
Researchers who simply recount classification 
accuracy may ignore nuggets of novel information 
about brain processes hidden in the ANN models that 
they and the data have jointly constructed. 

 

7. Discussion  

Uses of ANNs as classifiers currently dominates 
their applications to the field of brain signal analysis. 
This includes classification of brain or related signals 
as exhibiting normal or abnormal features or 
processes.  

Not surprisingly, all published studies report 
promising results. If the measurements can be 
modeled as an additive mixture of different sources, 
including task-related signals and artifacts, applying 
blind source separation (BSS) prior to the further 
processing, visualization, or interpretation may better 
reveal the underlying physical phenomena such as 
different brain processes) which in the raw data 
could be contaminated or overwhelmed by other 
processes of no interest. A survey of relevant papers 
shows that the most popular architecture for artificial 
neural network used is the multilayer perceptron 
(MLP) [18].  

The MLP architecture is both simple and 
straightforward to implement and use. In MLPs, 
information flows in one direction except during 
training, when error terms are back-propagated. Back 
propagation updates network weights in a supervised 

manner. Although it cannot guarantee a globally 
minimal solution, back propagation at least arrives at 
a local minimum through gradient descent.  

Various techniques have been derived to attempt 
to avoid over fitting to a local minimum. Once the 
network weights have been learned and fixed, feed 
forward networks can be implemented in hardware 
and made to run in real-time. All these characteristics 
make the back propagation algorithm most popular 
in biomedical applications. In some applications, 
target outputs may not be available or may be too 
expensive to acquire. In these cases, unsupervised 
learning algorithms may be used. Among 
unsupervised learning algorithms, self-organizing 
maps (SOMs) are the most popular for biomedical 
applications. During training, SOMs attempt to 
assign their input patterns to different output regions. 
Often SOMs may converge after only few learning 
cycles. 

 

8. Application Issues  

Although most published papers have concluded that 
ANNs are appropriate for their domain of interest, 
many issues still have to be resolved before ANNs 
may be claimed to be the general method of choice. 
Unfortunately, most published studies have not gone 
beyond demonstrating application to a very limited 
amount of data. As with any type of method, ANNs 
have their limitations that should be carefully 
considered: 

 Every study should provide a rationale for the 
data chosen as input. For example, ANN-
based computer-aided-diagnosis (CAD) 
systems may give misleading results if the 
ANNs are not given adequately representative 
features and sufficient naturally occurring data 
variations in their training data. Using ANNs, 
any input may yield some sort of output, 
correct and useful or not (“garbage in, garbage 
out”). Therefore, keys for success of ANN 
applications are not only to pick an 
appropriate architecture or learning algorithm, 
but also to choose the right data and data 
features to train the network. 

 Although methods of applying ANNs to 
biomedical signals have already shown great 
promise and great care must be taken to 
examine the results obtained. The issue of trust 
in the outputs of ANNs always deserves 
informed as well as statistical consideration. 
Since medical diagnosis is nearly always a 
multifactorial and multidisciplinary problem, 
medical experts should always evaluate 
network outputs in light of other direct or 
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indirect convergent evidence before making 
final decisions affecting the health of patients. 

 Before practical implementation is planned, 
ANN methods should be compared to more 
direct ways of obtaining the same answers, as 
these might sometimes prove more accurate or 
cost-effective [18]. 
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